Triglyceride-rich lipoprotein lipolysis products increase blood-brain barrier transfer coefficient and induce astrocyte lipid droplets and cell stress.
نویسندگان
چکیده
Elevation of blood triglycerides, primarily as triglyceride-rich lipoproteins (TGRL), has been linked to cerebrovascular inflammation, vascular dementia, and Alzheimer's disease (AD). Brain microvascular endothelial cells and astrocytes, two cell components of the neurovascular unit, participate in controlling blood-brain barrier (BBB) permeability and regulating neurovascular unit homeostasis. Our studies showed that infusion of high physiological concentrations of TGRL lipolysis products (TGRL + lipoprotein lipase) activate and injure brain endothelial cells and transiently increase the BBB transfer coefficient (Ki = permeability × surface area/volume) in vivo. However, little is known about how blood lipids affect astrocyte lipid accumulation and inflammation. To address this, we first demonstrated TGRL lipolysis products increased lipid droplet formation in cultured normal human astrocytes. We then evaluated the transcriptional pathways activated in astrocytes by TGRL lipolysis products and found upregulated stress and inflammatory-related genes including activating transcription factor 3 (ATF3), macrophage inflammatory protein-3α (MIP-3α), growth differentiation factor-15 (GDF15), and prostaglandin-endoperoxide synthase 2 (COX2). TGRL lipolysis products also activated the JNK/cJUN/ATF3 pathway, induced endoplasmic reticulum stress protein C/EBP homologous protein (CHOP), and the NF-κB pathway, while increasing secretion of MIP-3α, GDF15, and IL-8. Thus our results demonstrate TGRL lipolysis products increase the BBB transfer coefficient (Ki), induce astrocyte lipid droplet formation, activate cell stress pathways, and induce secretion of inflammatory cytokines. Our observations are consistent with evidence for lipid-induced neurovascular injury and inflammation, and we, therefore, speculate that lipid-induced astrocyte injury could play a role in cognitive decline.
منابع مشابه
Fatty acids from very low-density lipoprotein lipolysis products induce lipid droplet accumulation in human monocytes.
One mechanism by which monocytes become activated postprandially is by exposure to triglyceride-rich lipoproteins such as very low-density lipoproteins (VLDL). VLDL are hydrolyzed by lipoprotein lipase at the blood-endothelial cell interface, releasing free fatty acids. In this study, we examined postprandial monocyte activation in more detail, and found that lipolysis products generated from p...
متن کاملCharacterizing blood–brain barrier perturbations after exposure to human triglyceride‐rich lipoprotein lipolysis products using MRI in a rat model
PURPOSE Previous studies indicated hyperlipidemia may be a risk factor for Alzheimer's disease, but the contributions of postprandial triglyceride-rich lipoprotein (TGRL) are not known. In this study, changes in blood-brain barrier diffusional transport following exposure to human TGRL lipolysis products were studied using MRI in a rat model. METHODS Male Sprague-Dawley rats (∼180-250 g) rece...
متن کاملPostprandial VLDL lipolysis products increase monocyte adhesion and lipid droplet formation via activation of ERK2 and NFκB.
Postprandial lipemia is characterized by a transient increase in circulating triglyceride-rich lipoproteins such as very low-density lipoprotein (VLDL) and has been shown to activate monocytes in vivo. Lipolysis of VLDL releases remnant particles, phospholipids, monoglycerides, diglycerides, and fatty acids in close proximity to endothelial cells and monocytes. We hypothesized that postprandial...
متن کاملLipolysis products from triglyceride-rich lipoproteins increase endothelial permeability, perturb zonula occludens-1 and F-actin, and induce apoptosis.
Products generated from lipoprotein lipase-mediated hydrolysis of triglyceride-rich lipoproteins (TGRL) are reported to increase endothelial layer permeability. We hypothesize that these increases in permeability result from the active rearrangement and dissolution of the junctional barrier in human aortic endothelial cells, as well as induction of the apoptotic cascade. Human aortic endothelia...
متن کاملMicrosomal Triglyceride Transfer Protein (MTP) Associates with Cytosolic Lipid Droplets in 3T3-L1 Adipocytes
Lipid droplets are intracellular energy storage organelles composed of a hydrophobic core of neutral lipid, surrounded by a monolayer of phospholipid and a diverse array of proteins. The function of the vast majority of these proteins with regard to the formation and/or turnover of lipid droplets is unknown. Our laboratory was the first to report that microsomal triglyceride transfer protein (M...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Cell physiology
دوره 312 4 شماره
صفحات -
تاریخ انتشار 2017